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1. Introduction

As numerical models of the atmosphere become more

finely resolved, restraints on the size of time steps become

increasingly difficult to deal with. These restraints in

explicit time differencing are due to the well-known

Courant-Friedrich-Lewy (CFL) conditions which limit the time

step to the ratio of the spatial increment to the phase

velocity of the predicted variable. Thus, as the spatial

increment is decreased, the time-step must also be reduced.

Implicit time schemes avoid these restrictions. It has been

shown that for linear systems, time schemes where the time

dependent variable in the numerical approximation to the

analytic equation is given at the predicted time-step

(thereby requiring an "implicit" solution) are not subject

to CFL limitations. In fact, an Euler-backward scheme where

all references to the variable are given at the predicted

time step can be shown to be absolutely stable no matter how

large the time increment relative to the space increment.

This characteristic makes implicit schemes appealing for

application to numerical weather prediction. But there are

other factors involved in numerical weather prediction. For

one thing, the equations are non-linear and no one can

guarantee stability, even with implicit schemes, for non-

linear formulations. Non-linearity also poses practical



problems in solving for the predicted time step. Whereas

with linear equations, the terms involving the predicted

variable can easily be separated from terms involving known

quantities, with non-linear configurations, the separation

and hence the solution methodology may not be so

straightforward. Some of these impediments can be overcome

by introducing semi-implicit schemes.

Semi-implicit schemes derive their label from the fact

that only portions of the equation (generally, the linear

portions) are cast in implicit formulations. The rest of

the equation is left as an explicit expression of known

quantities. In this form the scheme is not absolutely

stable, and the size of the time-step does play a role.

Kurihara (1965), in fact, demonstrated that semi-implicit

schemes are weakly unstable and may not be able to resolve

short waves efficiently, if the time step is excessive. The

problem is magnified when physical processes are included.

In choosing a semi-implicit scheme for the relocatable

limited-area model (RLAM) developed by ST Systems, Inc., as

described by Tung et al., (1988), in support of the global

modelling effort at the Air Force Geophysics Laboratory

(AFGL), several different models were examined. These

included AFGL's global spectral model (gsm) itself, the

baroclinic model of the Met Service of Canada (Robert, et

al., 1972), and the regional model of the Australian
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Numerical Meteorological Research Centre, now Bureau ot

Meteorology Research Centre (BMRC) as detailed by McGregor,

et al., (1978). The methodology in all three models is the

same. A single equation in one variable is solved. The

solution is then used to solve for the other variables

expressed in terms of the first. In the case of the gsm, an

updated value of divergence is derived first; afterwards

vorticity, surface pressure, and temperature are forecast

based on the new value of divergence. The Canadian model

first solves for a variable which combines geopotential and

surface pressure and derives all others from it, while the

Australians first solve for temperature. In all cases, the

single equation in one variable is a Helmholtz equation,

where the right hand side contains all the non-linear terms

evaluated from known quantities at the present or past time

steps. The gsm and the Canadian model approach were

rejected in favor of the Australian model because of greater

compatibility with RLAM. The gsm, being a spectral model,

can carry vorticity and divergence as principal dependent

variables that are solved by the model's algorithm and then

transformed diagnostically into wind velocity components.

The RLAM, being a primitive equations, finite-difference

model, as shall be seen in the next section, carries the

velocity components themselves as principal variables. The

Canadian model does employ finite differencing, but its

vertical staggering of variables is dissimilar to the gsm

and RLAM. It may have been possible to reconfigure the

3



Canadian model for use by RLAM, but since BMRC's model was

completely compatible with RLAM, the rkth of least

resistance was chosen. The construction of the BMRC model

is theoretically consistent with RLAM's and and as such, it

was expected that adapting to RLAM would pose no problem.

Unfortunately, as one discovers quite often in numerical

modeling, theoretical consistency does not always lead to

applicability. In the ensuing sections, difficulties in

adapting the BMRC scheme to RLAM will be presented.

2. Review of RLAM

RLAM has been documented in various stages of its

development, notably in Tung et al., (1988) and Halberstam

(1988). Briefly, RLAM was designed to have multiple modules

so that forecasts can be made using any combination from a

number of differencing schemes both spatial and temporal.

The spatial choices consist of second or fourth order

differencing. Fourth order compact differencing had

originally been included but has been dropped because it did

not offer much in the way of advantage over the regular

fourth order scheme and required specifications along the

boundaries which were just as troublesome to deal with as

the regular fourth order. Along with the horizontal

differencing, one can specify the frequency and order of

smoothing along the lateral boundaries and/or over the

entire field. Second or fourth order diffusion can also be

4



specified with a variable (in space) diffusion coefficient.

Physical parameterizations are optional. The model allows

invoking one or all nf bulk boundary layer specifications,

large-scale precipitation, and a Kuo-type convection.

The lateral boundary conditions are also subject to the

selective process. At present, one can select among a

Davies-type (1976), Perkey-Kreitsberg (1976), or Orlanski-

type (1976) boundary specification. The selection of

lateral boundary specifications is crucial for limited-area

models. Great care must be observed in choosing boundary

conditions which are compatible with the spatial and

temporal differencing schemes. In any case, because gsm

data form some part of the boundary specification, it is not

conceivable that the limited-area model can depart too far

from the gsm without causing major disruptions. Thus, one

is faced with the disparate goals of expecting the limited-

area model to improve over the global model in the interior

on the one hand while also expecti-g the global model to

provile useful boundary conditions for the limited-area

model. Because in practice the model forecasts tend to

drift apart, modelers have had to devise boundary

specifications of the form mentioned here, where either a

slow blending of large-scale and interior boundary

conditions occurs or internal waves are allowed to exit the

domain without much disruption while exterior waves are

allowed to enter if conditions of this sort prevail. It

5



also requires that the forecast be limited in time so that

the boundaries do not swamp the interior completely.

For time schemes, RLAM originally included either a

standard explicit leap frog scheme or a Brown-Campana

pressure-gradient averaging scheme. The latter is still

explicit but the time-averaging affords more liberal time

steps. Because these time schemes are explicit, the time

steps have to be shortened as the spatial resolution is

increased. Thus, for high-resolution integrations, a semi-

implicit or equivalent scheme was required in order to keep

the model tenable and economically feasible. As already

mentioned, the BMRC scheme was selected because c- its

compatibility with RIAM. The following section summarizes

the theoretical basis for the scheme.

3. The BMRC semi-implicit scheme

Starting with a set of primitive equations, the BMRC

model consolidates the whole set into a single equation in

one variable. The original equations are

a u 
0 X

a. - v - & mMat XMY Tx my ay M"j ax

a ln p.

+ RT ax + fv + F,
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b. v = -mxmyu ) v §f_ -

+ RTa in p fu + Fay + RT ay f y

C. T T 87r T -m a T + T mxu _]7

HE at =-rx ax y 7 x + m Jv ay

• T + Ta r+o + +
ac 7 aTh+

(1)

a in p. a in p. v a in p.d. at -mmy mi ax + m ay

e. RT
ao

aqaqaq .aq
f q m q _My v Lq b L + s
f" at =  xU ax aa

T - temperature

u - Eastward wind velocity component

v - Northward wind velocity component

q - specific humidity

p. - surface pressure

- geopotential

t - time

x, y - horizontal map coordinates

a vertical coordinate R (p is pressure)
P.
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f - coriolis parameter

m., m,, - horizontal map factors

- Exner function (p-) ;K=-

R - Ideal gas constant

cp - heat capacity of air at constant pressure

vertical velocity = do

F., FY - horizontal friction

H - diabatic heat sources or sinks

S - moisture sources or sinks

A t+l + A t-1
Using the following notation for time averaging, 2 A

allows us to write the discrete approximation to the time

derivative A as (A - At)/At, where At" is the

variable A at time t+At and At"l is A at time t-At. This

centered differencing along with the accompanying right-hand

side containing terms in At, requires specification at

three time levels. We also separate the temperature, T,

into a climatological component, To, which depends only on

the vertical coordinate, a, and a spatially and temporally

varying component T'. Given these specifications we can

approximate (1) as

a(-.) a in Pi a In pt-a. u +Atm[ -- + RT x = a + AtmxRT o - a

8



a ( -. a in p. a in pt"
b. v +Atm[ ay + RTa yy =b+ tmRT o  ay

(2)

7 -tlTo  TO]°i 8To -
aatw" - Wt

d. + - in p ____

a- ay- In u a inp
Y + -M v

d. a..W__ + m.Mx = -y +x ff.- y

a in p'an
where the new variable W is equal to & + a at and

a In p.
because at the surface a = 1, and & =0,W. - at

or, in finite difference specification, At W. = in p - in p.

The moisture equation is solved explicitly using the updated

values of u and v for advection and is therefore not

involved in these manipulations and hence not listed in (2).

a, b, and c account for the non-linear portions of the

momentum and thermodynamic equations and are given as

A. a = u 1 
- tm~mY1u U it1 + v -L ; At li(b au - f v + Fj)

a ln RT a In p -0
-Atmx[RT' ax + RT --a + -

9



B. b = vt-i - AtmXmY u2( ) + v (-) - At(M-v + fu + FY)

a in p 80. a in pt--Atmy IRT' ay + + RT, y

(3)

8 in p.
C. c = Tt ' 1 - AtI m. u + m, v + At TK -x up.ax TYax

a in p T'K -T' W + At W. + At H,+ my v ay" + at -WT + t0aW.o tH
ay I ia I*j8

where variables without superscripts are to be evaluated at

time t. We must still specify a vertical differencing

scheme; horizontal differencing can be second or fourth

order as desired. If we stagger the vertical so that W is

specified at the a levels or interfaces (to be designated 6)

as opposed to all other variables which are carried at the c

layers, the vertical derivatives, except possibly those of

W, should have obvious finite depictions.

If the divergence (i.e., the second term on the left-

hand side) in (2)d is replaced by the differentiated linear

pressure gradient terms on the left-hand sides and the non-

linear terms on the right-hand sides of (2)a and (2)b, we

arrive at the following relationship:

10



VtV (2 _ ) _ (RToAtW.) = -mm.(&t) + Iy

mX myr a in p. v a in p.(
&t my a x +i ay (4)

The last term on the left-hand side comes from a combination

of the second derivatives of in p. at times t and t-At and

substituting the aforementioned finite-difference

approximation to W. - in .

The V2 operator is a generalized operator and is given by

V2 2 eA 8rex A 2 a 2A + M , n A
A 8m 2 + mx ax ax + ; 2 ay ay

x aa 2+
m mY aA m; amx aA
my ax ax m ay ay,

where A is any variable. Note that when the mapping is

conformal, i.e., m, = m, the operator reduces to its more

familiar two-term Laplacian.

After choosing a horizontal differencing scheme,

vertical finite differencing will determine the discretized

form of (4). Remembering that W is staggered in the

vW
vertical with respect to the other variables, in layer

i1



k can be discretized by (Wk,1 - Wk) (60) (4) is then

represented by this matrix form:

C(Wk) (k-.) - E V (Wk) = -mxmy (dk) (5)

where the block letters are KxK matrices K being the total

number of layers, and (k) represents a Kxl vector. Here

-r1  r, 0 0
o -r2 r2  0

-1
0 0 -r 3 r 3 0 ,rk =

0 0 S-ri-r

E=I It T . . .0

E = R ,& t T o . . . 0

T o  0. . . . 0
K

and dk represents the right-hand side of (4) divided by

-m y . Note that although there are K+I levels, (Wk) is

only a vector with K components because WK., = 0 and need

not be included.

(2)c can now render a relationship between (Tk) and

(Wk), while the hydrostatic equation relates (Tk) to (h).

Vertical differencing of (2)c can be accomplished in a

number of ways, however, and the choice bears significant

consequence. Because To is specified arbitrarily, one can

12



define To and -s analytically at both layers and

levels. Thus, while (2)c must be specified at a layer and

therefore requires some kind of averaging of the level-

defined W, the coefficients of W can either be defined

directly at the layers or defined at the levels and averaged

along with W. Instinctively, it was felt that the

differencing on the left-hand side of the equation should be

consistent with the differencing employed for the right-hand

side (rhs), given in (3)c. But here again a number of

choices arn available even for the rhs. Since W is defined

at the levels while T' is defined at the layers, we can

average W over surrounding levels and use centered

differencing for -T' This, in effect, is the method

employed by BMRC (not mentioned in the 1978 article). But

this can lead to problems at the first or uppermost layer,

where T' is not defined below the first or above the top

layer. BMRC, in fact, extrapolates downward to estimate a

surface temperature and assumes a constant lapse rate at the

top. One can avoid this questionable procedure by simply

approximating the terms,

KT '  3T 1,W + a MT 'w
d- aa •

13



for any layer k as

(K Toj')c7 k+ ( + (4) - -[ (T+,-T')Wkl (ok, - Ok) +

(T' - Tk.1)Wk(ak-ok.1) ) + [ (Tk. 1  - Tk) kW (ak 1 - Ok) 1 +

(Tk - T'k-1)&k(ak - ak) 1 W.

Now, since WK I and &K+1 are 0, there is no need for

def ining a T'K+ I . On the other hand, a^, = 1 and W, = W. so

that the second of the bracketed terms will cancel when k=l

and there is no need to define To. Representation of the

first term, given analytically as KT'I1W, is also possible

in more than one way because a can be defined either at the

level or layers. Thus the first term may also be written

I T;)(- k ' + W-k)As we shall see, the choice of this

representation can have a profound effect on the results of

the model.

With any of the discretization specified above, (2)c

can be written in generalized matrix form as

(Ti) - A(Wk) = (ck) (6)

where the matrix A is defined as a KxK matrix with

elements

14



GS' s2 0 0 0 o

2  s,1 s 0 0 . 0

GK

where, for example, if we take the non-centered form over

the layers, then

G k  = ak1(Tk.1 - ToK) (k,1-0k) + ak(Tok - Tok.) (Ok - Oki) 
I

KTok
Si- (To - Tok) (ak - Ok1)

Sk = K Tok -(Tk,1 _ Tok) (k.,. - Ok)

The hydrostatic equation in matrix form can be represented

as

(;k - .) = (7)

where the matrix B is dependent on the particular

discretized relationship one chooses between layer heights

-f --

and temperature. One can now substitute for (4k) and (Wk)

in (5) using (6) and (7), and arrive at one equation for

(Tk), i.e.,

15



IB + EA_ )v(TO -CA(ik) =Mmm(dk) + AV(co - CA (Ck) (8)

By multiplying all terms by (B + EA-)- and combining all

terms on the right-hand-side, one remains with a classical

Helmholtz equation in three-dimensions,

2(Tk) - G(Tk) = (Rk) (8a)

Solution of (Ba) first requires reduction to a two-

dimensional problem by projecting the vectors onto each of

the eigenvectors of the matrix G- This is

accomplished by substituting for (Tk) and (Rk)

by (Tk) and (rk), where the latter are the former

times the inverse matrix of eigenvectors of G, i.e.,

(Tk) = V(k),

where V is the matrix whose columns are the eigenvectors of
-I

G. (Ba) then becomes, after multiplying by V

V 2(T) - A(TO = (rk),

where A is the diagonal matrix of eigenvalues

corresponding to the eigenvectors. This equation neatly

divides into K two-dimensional Helmholtz equations which can

normally be solved by both direct and indirect methods.

16



However, because the map factors appearing in the Laplacian

operator are spatially dependent, only indirect iterative

methods of solution can be invoked.

After r is determined, T is found by multiplying
-v

through by the eigenvectors. Once T is known, one can

theoretically invert (6) to derive (Wk) and hence ln p.,

derive (ik) from (7) and, finally, u and U" from (2)a and

(2)b. This is the procedure suggested by BMRC, but there

seem to be some latent problems associated with this

algorithm, as will be described in the next section.

4. Deriving pressure from temperature: some pitfalls

To derive W from T one inverts (6) to obtain

(Wk) = - CO (9)

The updated surface pressure can then be derived by invoking

the finite-difference approximation mentioned earlier, i.e.,

AtW. = ln p - ln p.".

At this point, we may consider what variables have yet

to be solved in the system of equations (2) before stepping

forward to the next time period. Methods for deriving 0"',

ut l, and vt l have been outlined in the previous section.

But the vertical advection terms in (3)A and (3)B are given

17



in terms of &, which has not been explicitly specified. In

truth, & was preempted by the creation of W to serve as a

substitute variable. This exchange should require one to

replace & in the non-linear terms with W similar to (3)C.

If & is kept, one may regard the equation defining W in

terms of & as a diagnostic equation for &. If so, (9) is

ipso facto a solution for &, as well. Yet BMRC rederives

from the continuity equation using updated values of u and

v. This unnecessary computation will not always yield the

same & values as would be derived from W and is not

consistent with the rest of the model. However, when we

attempted to derive & directly from W, we found the values

to be unreasonably large, as was the value of W. which is

the surface pressure tendency.

What caused these problems seems to stem from the

inversion of the matrix A in (9) to obtain (Wk). For the

sake of demonstration, we may choose a constant T. that does

not vary with height without any loss of generality. In

fact, the nature of A and its inverse depends little on To p
as one would expect. The values of Gk in the definition of

A then all become zero, and A becomes a bidiagonal matrix
with elements sk and sk equalling q' or &k , depending

on the choice of discretization. One would also hope that

it should matter little whether we discretize the term
KTo &"as asoO1 as "''

T , T + k.), or as any

other weighted combination of 6k1 and k. 1 But the

18



inverse of A is profoundly affected by this choice. If we

Wk+1 +
select the second option, i.e., K T0 W

" 
= K To +

then

A 2 2 0 &2 -&2 ±&2A AtKT °

0 0 0 0 -

with the last column's sign dependent on whether K is odd or

even. W. depends only on the first row, which, because &1

= 1, consists merely of alternate entries of ±1. Thus, the

pressure tendency will depend exclusively on the magnitude

and pairing of the differences between T and c, the non-

linear tendency of the temperature including physical

processes. For pressure tendencies to remain reasonable,

one must require that 2AtW. be of the order 10'. Since

(KTo) " 
-is of the order of 10'2 , T - c should be close to

or less than 10" 2 C in order for the pressure tendency to

remain reasonable. Note that there is no apparent

dependency of surface pressure tendency on At as 2AtW.

cancels the 1 in the coefficient of A. However, At is aAt

factor in c, as given by (3)C, underlining the fact that the

time differencing is not fully implicit, so that the time

step still affects the non-linear tendency but not the

linear tendency. Because c contains physical processes, it

19



-7

is unreasonable to expect that T -c be constrained to be

less than 10.20 C at all times and it is certainly

unreasonable to expect that there be any specific coupling

between layers so that the effects of T -c cancel each

other. This is especially true near the surface where

condensation and boundary layer processes affect the first

layer temperature more than other layers.

If the first finite differencing is invoked, i.e.,

K To a- 1 (Wk 1 + Wk) then A" b
"0 , becomes

01 -02 03 -04 CK'

2 0 02 03 0'-O

Oat 0 0 0 0 
0K

Here, as the a values decrease with increasing k, the

stability can be maintained even with higher values of T -c

at upper layers. This would point to a vertical

discretization with higher resolution near the bottom and

less resolation near the top of the model. Thus, by what

seems like a simple assumption with respect to vertical

finite differencing, appreciable consequences with regard to

stability can occur. This would point to an extreme

sensitivity on the part of the matrix A. This sensitivity

suggests an ill-conditioned situation where small

differences in data are magnified to levels far beyond what

one would expect.

20



As a simple example consider this 12-layer profile of

T -c taken from a successful forecast by RLAM during

February, 1979:

(Tk-ck) = (-4.2932 x 10 , - 9.8038 x 10 "
, -. 105177, -4.1259 x 10" ,

2.4924 x 10. 2 , 7.1272 x 10 3 , 2.1306 x 10-2

-2 - -2
-7.9304 x 10 , -2.7754 x 10 2

, -.17636, .38922)

lf we assume, as BMRC did, that Ao = - and ck = !(&k

+ &k-1), and that Wo"I is given by averaging level W and

dividing by layer a one obtains

(Wk) = (-6.038 X 10 .7  -9.967 x 10'7 , -2.340 X 106, -8.988 X I0,

-2.381 x 10.7  -1.389 x 10-7, -7.609 x 10-7,

-1.488 x 10' 6 , 6.309 x 10-7 )

The first value is the tendency of ln p and is of

acceptable magnitude. When the averaged & were used,

however, (Wk) became

(-1.518 x 10.5 , 1.238 x 10" , -1.444 x 10'5 , 9.923 x 10-6

9.223 x 106, -7.421 x 10 6 , 6.300 x 10- 6 , -4.763 x 10-6

2.801 x 10'6, -3.667 x 10"6, 1.262 x 10-6 )

This increase by two orders of magnitude of the surface
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pressure tendency yields values too large for stability and

graphically portrays the sensitivity of inverting the A

matrix. The same occurred when the NMC 12-layer structure

was assumed. Here a was highly resolved near the surface,

less resolved in the mid-troposhpere and highly resolved

near the tropopause. The relationship of a to & is O =

(1K)(1K))

(-k ( I
*
K )  

_ 
0 k1 )/[ (]+K) (ak - Ok,1) I. When a was

used W was -3.896 x 10-7, while averaged & values resulted

in -1.518 x 10'5, again a two order-of-magnitude increase,

albeit not as large as with the BMRC discretization.

5. Conclusion

Apparently, the BMRC scheme can lead to instabilities

wrought by the vertical differencing and the necessity to

derive pressure tendencies from the vertical profile of the

temperature tendency minus the non-linear terms of the

thermodynamic equation. This linkage, although

theoretically sound, depends inordinately on the

differencing scheme, demonstrating that the A matrix may be

ill-conditioned and unreliable as a means for deriving

surface pressure and vertical velocity. Inverting the

problem is a possibility. It involves substituting in (5)

for 0 in terms of W by means of (7) and (9) and solving for

W then deriving T . Unfortunately, that procedure does not

solve the problem, first, because (9) is still used in the

substitution and second, because values for W at the lateral
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boundaries are hard to come by since vertical velocity is

normally derived diagnostically from forecast divergence and

is not stored as a prognostic variable. Attempts at

forecasting W and deriving T did not seem any more

satisfactory.

Despite its failings, the BMRC semi-implicit scheme

does have its application. If time steps are constrained,

the scheme could produce forecasts still more economically

than explicit schemes that must keep their time steps in

proportion to the grid size. The problem is knowing ahead

of time how large a time step the scheme can tolerate.

Several RLAM forecasts were produced over North America and

the North Sea with the semi-implicit scheme. These

forecasts contained physical parameterizations including

boundary layer fluxes and large-scale and convective

precipitation with a resolution of approximately 200 km over

North America and about 100 km over the North Sea. The

semi-implicit scheme yielded forecasts with time steps of

about 600 s for both locations and these forecasts compared

well with the Brown-Campana explicit formulation using time

steps of 180 s for North America and 120 s for the North

Sea. Near the lateral boundaries, the North American

forecasts seemed to be noisier than the Brown-Campana

forecasts. But even with a time step of 600 s, one forecast

over the North Sea failed after successfully forecasting for

close to 40 h of simulated time. When the forecast was re-
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run with a time step of 480 s, it was stable to 48 h. This

emphasizes the unreliability of the scheme and serves as an

illustration of what can go wrong without warning because of

an unexpected shock to the model.

The failure of the BMRC scheme to provide stable

results is not necessarily the result of a flaw endemic to

all semi-implicit schemes. As mentioned, the semi-implicit

scheme of the AFGL gsm or of the Canadian model are

apparently not subject to the same difficulties as the BMRC

model. It may even be possible to slightly modify the BMRC

scheme to make it less sensitive. Results from this study,

however, should encourage close scrutiny of any numerical

scheme before adaptation to any model.
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